{ListeTraductions,#GET{ListeTraductions},#ARRAY{#LANG,#URL_ARTICLE}}
 

Programme 2015-2016

Accès rapides

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>

29 septembre : Sylvain Gigan

Laboratoire Kastler Brossel, ENS

"Optique Adaptative Extrême : imagerie en milieux diffusants"
La diffusion de la lumière dans un milieu diffusant, par exemple la peau ou encore un verre de lait, est en général considéré comme une perturbation inévitable et néfaste. Ce phénomène détruit en apparence, via des diffusions et des interférences multiples, tout information spatiale ou de phase contenue dans une onde laser incidente. Spatialement, cela se manifeste par l’apparition de tavelures (le « speckle », en anglais) dues aux interférences. Dans le domaine temporel, une impulsion lumineuse courte entrant dans un milieu diffusant verra sa durée allongée à cause de la multiplicité de chemins longs ou courts que la lumière peut prendre avant de sortir du milieu. D’un point de vue pratique, la diffusion limite donc fortement les possibilités d’action dans un milieu diffusant, tant pour l’imagerie que pour la manipulation optique d’objets.
Néanmoins, les milieux diffusants les différents paramètres, de structures totalement désordonnées (comme des suspensions dans des liquides) à totalement ordonnées (comme les cristaux photoniques), de solide à granulaire ou liquide, de simple diffusion à diffusion résonante, de milieu absorbant à milieu amplificateur, ouvrent de nombreuses voies d’exploration et d’étude de phénomènes physiques nouveaux.
La diffusion multiple, phénomène hautement complexe, reste un phénomène déterministe : elle est donc en principe réversible. Le speckle est cohérent, et il est donc envisageable de le contrôler de manière cohérente. En « façonnant », ou en « adaptant » le champ incident, il est en principe possible de contrôler la propagation et de s’affranchir du processus de diffusion. Je montrerai comment il est possible est de contrôler le champ incident sur un milieu diffusant, et ainsi imager ou étudier ces milieux.

6 octobre : Olivier Pouliquen

Groupe Ecoulements de Particules, IUSTI, Polytech Marseille

"Les milieux granulaires : entre fluide et solide"
Sable, sucre, riz, cailloux sont quelques exemples de milieux granulaires. Cette matière en grains qui est présente dans notre vie de tous les jours est d’une grande importance dans de nombreux procédés industriels ainsi que dans de nombreux phénomènes naturels (avalanches, éboulements de terrain, dunes…). Pourtant leur comportement à la frontière des fluides et des solides résiste encore sur bien des points à notre compréhension. Le séminaire sera l’occasion à travers quelques expériences de démonstration de discuter des avancées récentes dans le domaine et des questions encore ouvertes que posent le comportement des milieux divisés.

13 octobre : Alexandra Walczak

Laboratoire de physique théorique, ENS

"How physics makes biology work"
Living organisms have to obey the laws of physics. They can also exploit physical principles to function. Huge bird flocks move in a correlated manner, cells transmit information when responding to their ever changing environment and the immune system brings together many cells to protect us from threatening bugs. In the spirt of the condensed matter “more is different” maxime, I will show how we can explain the observed complex behavior in biological systems in terms of physical laws and maybe learn some new ones.

20 octobre : Alexis Poncet & Thomas Chalopin

2 présentations de stage long par des anciens étudiants du M1

"Normal Modes of Soft-Sphere Packings : from High to Physical Dimensions"

"Development of Robust Quantum Control over Nitrogen Vacancy Centers in Diamond"

Nitrogen Vacancy centers in diamond (NV centers) are defects with interesting properties that make them relatively easy to manipulate. Their ground state forms an electronic spin S = 1 triplet which can be optically addressed (pumping) and read. The NV centers are sensitive to magnetic fields, electric fields and strain, and are already being used as nanoscale sensors with potential applications in research, industry and medicine. Transitions are addressed with RF pulses and can be isolated to form an effective two-level system (qubit) with long coherence times, making the NV center a good candidate for quantum computing. The goal of my project was to install and test a new Digital to Analog Converter (DAC) used as an Arbitrary Waveform Generator (AWG) for enhanced control over the NVs’ spin states. The DAC was implemented in the experimental setup, and was used to perform Dynamical Decoupling (DD), allowing a significative improvement over the coherence times of the qubits. Finally, the DAC and DD sequences were used to investigate the origin of decoherence of shallow NV centers by probing surface noise.

3 novembre (à 17 h, salle Dussane) : Frank Wilczek

"A Beautiful Question : Finding Nature’s Deep Design"
Physicists often talk of the beauty of their picture of the world. But
what exactly do we mean ? Are we kidding ourselves ? What does this kind
of “beauty" have to do with beauty in art and music ? And if we truly
identify beauty in the fundamental laws of nature : Why does it happen ?
What does it mean ? Those are the kinds of questions I’ll explore, aided
by some striking images.

10 novembre : Jean-Louis Barrat

Laboratoire Interdisciplinaire de Physique, Univ. J. Fourier (Grenoble)

"Multiscale modelling : connecting statistical physics to engineering applications"
The development of nanosciences raises new challenges and opportunities for material sciences. One may broadly say that these new challenges fall in two different categories. Firstly, how do the properties of matter evolve as a function of the scale under consideration, and in particular when the dimensions of devices fall into the nanoscale range ? While this question is most often discussed for electronic properties, it also arises for many other usage properties of materials, in particular mechanical, flow or thermal properties. Second, can one make use of a better knowledge of the nanoscale properties to gain a better understanding of, and possibly improve, macroscopic properties of materials that involve internal structures at various scales ?

These questions are intimately related to the development of multiscale modelling approaches, a rather broad domain which is understood here as methods that allow one to establish relevant links between phenomena taking place at different scales of description, and assess the validity of each description at different length and time scales. In this spirit, the presentation will address problems that are of current interest to the materials science and engineering community, and involve particular challenges in bridging the length and time scales gaps, such as interfacial transfers or properties of nanostructured materials.

17 novembre : Raphael Cerf

Université Paris-Sud, ENS

"Genetic Algorithms and Quasispecies"
We will present the basic genetic algorithm. We will explain the quasispecies model introduced by Eigen.
We will finally discuss possible ways to control the behavior of the genetic algorithm.

24 novembre : François Levrier

Laboratoire de radioastronomie, ENS

"The large ground-based instruments for 21st century radio-interferometry"
Radioastronomy, which was born in in the 1930s, is now entering a new era, with several large ground-based interferometric instruments opening to the astrophysical community, and several others currently under construction. In the submillimetre and millimetre range, the Atacama Large Millimeter Array (ALMA) has already provided revolutionary observational data that challenge our understanding in several fields of astrophysics. In the near future, the longer wavelength ranges will undergo a similar, if not even more drastic revolution, with the advent of the Low Frequency Array (LOFAR) and Square Kilometer Array (SKA) instruments.
I will give an introduction to the field of radio-interferometry, then present these new and upcoming observational facilities, with an emphasis on the exciting science that is expected from them.

1er décembre : Elie Raphael

UMR CNRS Gulliver 7083, ESPCI

"Waves and ship wakes"
Simply by looking at a duck swimming in a pond or a cargo ship moving on a calm sea, one can clearly tell that there is something common about their wake. Indeed, they both display a familiar V-shaped pattern which only differ from one another by their dimensions. In 1887, Lord Kelvin was able to provide a theory to explain the ship-wave pattern. His most popular achievement was to prove that the wake created by a disturbance moving at a uniform pace is always delimited by a straight wedge with half-angle 19.5 degrees, independent of the velocity of the disturbance. Recently, Kelvin’s century old and well accepted theory was challenged, by that drawing the attention of the fluid dynamics community…

8 décembre : Christophe Voisin

Laboratoire Pierre Aigrain, ENS

"A carbon nanotube based single-photon source"
After a brief introduction on the optical properties of solids at the nanoscale, I will present our recent results about using carbon nanotubes as quantum sources of light. In particular, the use of an original micro Fabry-Perot cavity based on micro-engineered optical fibers allows us to tailor the emission properties of carbon nanotubes by means of cavity quantum electrodynamical (CQED) effects. Finally, the specificity of a solid-state embedded two-level system shows up in the coupling to vibrations (phonons) and provides an extra knob to tune the photon emitter on a very large spectral window.

15 décembre : Jules Grucker

Laboratoire Kastler Brossel, ENS

"Metastable solid helium 4 : a way to supersolidity ?"
After a quick presentation of the fascinating properties of condensed phases of helium -4 at low temperatures, I will present the effort of the experimental group "solid helium" at Laboratoire Kastler Brossel to achieve a metastable state of solid helium. This state is a candidate for a possible but not yet discovered supersolid state of matter.

12 janvier : Claire François-Martin

LPS, ENS

"Experimental measurement of the activation energy of phospholipid membrane fusion"
Organisms and cells are divided in different compartments which have their own funtion but nervertheless need to communicate with one another. This communication relies on membrane fusion. In vivo, fusion must not occur spontaneously in order to maintain the integrity of the compartments. This is why this process requires a large activation energy that is overcome thanks to the action of multiple proteins. Even though biological fusion is very complex and involves proteins, the result is the coalescence of both lipid bilayers taht constitute the cores of the involved membranes. This is why the activation energy that is necessary to disrupt the leaflet arrangement during lipid bilayer fusion should be similar to that of in vivo membrane fusion.
We established a protocol to experimentally measure the activation energy for phospholipid membrane fusion. In our experimental setup, the frequency of the rare spontaneous fusion events is investigated at various temperatures, which allows determining the activation energy thanks to Arrhenius’ law.

19 janvier : Thierry Jolicoeur

Laboratoire Physique Statistique et Modeles Statistiques, Université Paris-Sud

"Statistiques fractionnaires et charges fractionnaires"
Dans le monde des particules elementaires, on trouve des bosons et des fermions et les spins associes sont respectivement entiers et demi-entiers. Les principes generaux de la theorie quantiques des champs permettent de comprendre pourquoi on a ces cas de figure. Quand le monde est restreint a des dimensions plus basses, comme un monde planaire, la mecanique quantique permet des statistiques plus générales, ni fermioniques ni bosoniques. Ce cas de figure se trouve dans le regime de l’effet Hall quantique dit "fractionnaire", realise dans des gaz bidimensionnels d’electrons. Il est meme permis d’avoir des statistiques encore plus exotiques dites non-Abeliennes qui sont presentes dans des modeles jouets et peut-etre aussi dans des systèmes quantiques fabriques a dessein. Le mot non-Abelien signifie ici que l’echange des particules met en jeu des matrices qui naturellement ne commutent pas.

9 février : Julien Fuchs

Laboratoire pour l’Utilisation des Lasers Intenses, Ecole Polytechnique

"High-energy-density plasmas : from the quest of fusion to astrophysics"

16 février : Bertrand Laforge

CERN

"Les nouvelles du boson de Higgs au CERN"
Le 4 juillet 2012, les expériences ATLAS et CMS annonçaient la découverte
d’une nouvelle particule ayant les propriétés attendues pour un boson de Higgs. Au cours de ce séminaire, je décrirai comment on est arrivé à découvrir cette particule près de 50 ans après sa prédiction théorique. Depuis 2012, de nombreuses études ont complété notre connaissance de ce nouveau boson. Je décrirai également l’état actuel de nos connaissances à ce sujet et comment le secteur du Higgs est également devenu un sujet de recherche très actif pour découvrir de la physique au delà du modèle standard.

23 février : Bernard Derrida

Collège de France et Ecole Normale Supérieure

"L’importance des fonctions de grandes déviations dans la physique hors d’équilibre "
Au cours des deux dernières décennies plusieurs propriétés générales des systèmes hors d’équilibre comme le théorème de fluctuation ou des relations sur la distribution de travail dissipé ont été découvertes.
Après une brève revue de ces propriétés générales, le séminaire présentera une série de résultats obtenus ces dernières années sur les fonctions de grandes déviations de modèles simples de la physique hors d’équilibre. Certaines questions ouvertes seront également discutées.

1 mars : Sébastien Balibar

Laboratoire Pierre Aigrain, Ecole Normale Supérieure, Paris

"La Plasticité Géante d’un Cristal Quantique"
Nous avons découvert [1] que les cristaux d’hélium 4 présentent une plasticité géante dans le limite des très basses températures si l’on élimine toutes leurs impuretés. Dans de telles conditions, les cristaux d’hélium ne résistent pratiquement pas au cisaillement dans une direction particulière, même sous contrainte extrêmement faible (1 nanobar) et au voisinage du zéro absolu (0.01 Kelvin). Ce phénomène est un cas unique de plasticité réversible car nous avons montré qu’il est une conséquence du glissement sans dissipation de certains défauts cristallins, des "dislocations coins". La dynamique quantique de ces dislocations conduit à différentes autres anomalies élastiques qui seront présentées [2][3].

[1] A. Haziot, X. Rojas, A.D. Fefferman, J. Beamish, and S. Balibar
"The giant plasticity of a quantum crystal",
Phys. Rev. Lett. 110, 035301 (2013).
[2] A. D. Fefferman, F. Souris, A. Haziot, J. R. Beamish, and S. Balibar
"Dislocation networks in helium-4 crystals",
Phys. Rev. B89, 014105 (2014).
[3] F. Souris, A.D. Fefferman, H.J. Maris, V. Dauvois, P. Jean-Baptiste, J.R. Beamish, and S. Balibar
"Movement of dislocations dressed with 3He impurities in 4He crystals"
Phys. Rev. B 90, 180103 (R) (2014)

22 mars : Leonardo Mazza

Département de Physique, Ecole Normale Supérieure, Paris

"Quantum simulation with cold atoms"
Introduced some decades ago by Feynman, quantum simulation aims at directly exploiting experimental quantum systems for solving currently intractable quantum problems. I will start this talk with a brief introduction to quantum simulations, motivating why cold atoms are playing an important role in its development. In the second part of the talk I will focus on two specific problems which I have been working on in the past years : the quantum simulation of a synthetic dimension and the quest for the observation of Majorana fermions in ultra-cold gases.

29 mars : Henry McCracken

Institut d’Astrophysique de Paris

"The changing relationship between galaxies and dark matter in the cosmos"
My research addresses exploring the changing relationship between galaxies and dark matter over cosmic time. In particular I would like to understand how the growth of galaxies and the formation of stars is influenced by the properties of dark matter haloes which host them. To address these questions requires large surveys (more than a million galaxies) covering a very large epoch in cosmic time. Much progress has been made in this field in the last decade or so : it is clear now that different galaxy types (e.g., spiral and elliptical) at the present day have undergone radically different evolutionary histories. By using a technique we have perfected over the past few years, based only on photometric measurements, we can create samples of distances of more than million galaxies in a single part of the sky (for instance the ‘COSMOS’ field) and then investigate how the distribution and colour of these galaxies changes with cosmic time. At the same time, it has been shown theoretically that the distribution of dark or invisible matter also changes, and it is now clear that this dark matter is responsible for the emergence of structure on very large scales. Understanding the interplay between the dark and luminous components of the Universe is another theme of my work.

5 avril : David McClelland

Centre for Gravitational Physics, Department of Quantum Science Research School of Physics and Engineering, The Australian National University

"Laser interferometer Gravitational Wave Detectors - pushing the limits of optical sensing"
Laser interferometer gravitational wave detectors are the largest and most sensitive optical sensors ever built. These massive instruments, ultimately limited by quantum mechanics, sense the weakest signals in the universe emitted by its most violent events. In February 2016, the LIGO and Virgo Collaborations announced the detection of gravitational waves and with it the beginning of the new field of gravitational wave astronomy. As with all fields of astronomy, the quest to understand the universe will demand detectors with better and better sensitivity. As future antennae are predicted to be primarily limited by quantum noise, non-classical states of light will feature in driving their sensitivity to sense the universe out to cosmological distances. After briefly introducing gravitational waves and GW astronomy, we will peer inside one of these detectors with a quantum ear to the future.

12 avril : Claudio Giganti

LPNHE, Institut National de Physique Nucléaire et de Physique de Particules (IN2P3)

"The neutrino oscillations and the T2K experiment"
In this seminar we will give a review of the discovery of the neutrino oscillations including the most recent results from the T2K experiment. After a brief introduction of neutrinos in the Standard Model of particle physics we will describe the phenomenon of the neutrino oscillations and their discovery by the Super-Kamiokande and the SNO experiments, for which these experiments were awarded with the Nobel prize in 2015. We will then review the current picture and the next steps in the field, describing in particular the most recent oscillation results from the T2K experiment, a long baseline neutrino oscillation experiment that is currently taking data in Japan.

Accès rapides

Prochain Séminaire de la FIP :
Accéder au programme

Retrouvez toutes les informations pour vos stages :
Stages L3
Stages M1 ICFP

Actualités : Séminaire de Recherche ICFP
du 14 au 18 novembre 2022 :

Retrouvez le programme complet

Contact - Secrétariat de l’enseignement :
Tél : 01 44 32 35 60
enseignement@phys.ens.fr

r>