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In this TD we shall study with the replica method the thermodynamics of the fully connected
p-spin glass model, defined by its Hamiltonian

H(g; i) = — Z Jiliz...ip0i1 . -Jip . (1)

1<i1<ia<. . ip<N

The Ising spins o; have p-body interactions (p = 2 corresponds to the Sherrington-Kirkpatrick model),
the coupling constants J;,. ;, are Gaussian i.i.d. random variables of zero mean and variance
We denote E[e] the average over these random couplings.

We will be mostly interested here in the case p > 3 ; even though these multi-body interactions do
not seem microscopically motivated, the properties of this model has strong similarities with the ones
of the structural glasses, and a mean-field theory for the glasses, called Random First Order Transition,
was built starting from the p-spin model. Moreover this type of interaction appears naturally in the
interdisciplinary applications to computer science.
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1. Show that the energies H(cg;.J) are correlated Gaussian random variables with zero mean and
covariance

1
E[H(g; J)H(z; J)] = N3a(e, 7)P(1 + o(1)) (2)
when N — oo, where ¢(0,7) = & L SN 047 is the overlap between the two configurations.

2. Explain why this model should become equivalent to the random energy model in the limit
p — oo (taken after the thermodynamic limit N — o).

3. Compute the annealed free-energy f,(3) of the p-spin model.

The computation made during the lectures showed that, when n is a positive integer,
1
Jm S IE(Z(8,0)" =supA@),  with AQ)= n— s ; o +5@Q) ,  (3)
a

where Q = {qu} is an n X n matrix, with 1 on the diagonal, encoding the overlaps between the
n replicas of the system and S(Q) the entropy of such configurations. The latter term can be
computed to obtain

B 1
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To determine the quenched free-energy we want to use the replica trick and express

n—0n

fa(B) = _5 lim A(Q ) (5)

where @, is the saddle-point dominating A. To take the limit n — 0 we have to make an ansatz
on the form of @, as we shall now discuss.
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We start with the simplest and most natural Replica Symmetric (RS) form of the matrix @,
with qup = ¢ > 0 for all a # b.

(a) Show that such a saddle-point yields the following free-energy,

> d 1,2 —1

to perform this computation you should use the identity

/oo dz 67% 2+azze%“2 . (6)
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(b) Check that frs(q = 0;8) = fa(53), the annealed free-energy.

(¢) Analyze the behavior of the various terms of frs in the limit ¢ — 0, and conclude that
q = 0 is a local maximum for p > 3.
(d) The best estimate of the quenched free-energy within the RS ansatz is frs(5) = sup frs(q; 5)
q€[0,1]
(the maximization instead of the usual minimization being a counter-intuitive consquence
of the n — 0 limit). Assuming that ¢ = 0 is the global maximum, argue that a phase
transition must occur for some 4 < 2v/In2 (you should compute the entropy associated to

Irs)-

This phase transition manifests itself as Replica Symmetry Breaking (RSB) of the relevant
saddle-point @).. The simplest way to break the symmetry between the n replicas is to divide
them into n/m groups of m replicas, and to take g, = ¢q1 for the off-diagonal elements of the
n/m diagonal blocks of the matrix @, i.e. when a # b are two distinct replicas of the same
group, and ¢.p = qo in the off-diagonal blocks, i.e. when a and b are in different groups. This is
the first level of replica symmetry breaking (1RSB). In the present model one can actually take
qo = 0, as suggested by the RS solution.

(a) Compute A(Q) for such a matrix, and take the limit n — 0 with m € [0, 1] to obtain

fmsp(amif) = ~4 - 52— (- m) -1
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(b) How does this expression simplifies when ¢; =0 ? and when m =1 ?

The estimate of the quenched free-energy of the model at the 1RSB level is obtained by maximizing
firss(q1,m; 8) with respect to ¢; and m, both in the interval [0,1]. The equations obtained by
imposing the stationarity of firsp with respect to ¢; and m have different type of solutions depending

on the temperature :

At high temperature, above a temperature that we call Ty, there is only one solution corre-
sponding to ¢; = 0. In this regime we recover the high temperature (replica symmetric) solution
discussed previously. The temperature Ty depends on p: for p = 3 one finds Ty ~ 0.681598,
whereas for p — oo one has Ty — oo.

Below Ty and above a temperature that we call Tt one finds two solutions: (1) the high temper-
ature solution discussed before, (2) a new one corresponding to m = 1 and ¢; > 0. As it can be
easily checked, they have the same free energy. The temperature 7. depends on p: for p = 3 one

finds T, ~ 0.651385, whereas for p — oo one finds T, — ——, which is the critical temperature

2v/1In 2

of the random energy model.

Below T, the optimal solution corresponds to 0 < m < 1 and ¢; > 0. The high temperature
solution exists at any temperature, as discussed previously, but is not optimal for T" < T¢.

The interpretation of these transitions will be discussed in the next lecture.



