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1 Some Basics

(1) Answer the following questions:

1. Show that the multiplication table of the group of order 2 is determined uniquely.
Confirm that this group is Abelian (=commutative).

2. Show that the multiplication table of the group of order 3 is determined uniquely.
Confirm that this group is Abelian.

3. Let us consider a group of order r denoted as G = {¢g1, g2, - ,gr}. We can compute
919,929, , grg for a given g € G. Show that {g19, 929, ,grg} contains all the
elements of G and each element of G appears one and only one time.

We can also show that the above statements hold for gg1, ggo, - - - ,gg, for a given
g € G. These results mean that, in each row and column of a multiplication table
for a group G, each element of G appears one and only one time.

4. Show that there are two non-isomorphic groups (i.e. two different multiplication
tables) of order 4. Confirm that both of them are Abelian.

(2) Let us consider a set S of maps from N to N (here N = {1,2,3,4,---}). We define a
multiplication of two elements fi, fo € S by the composition of the maps, (f1 - f2)(n) =
fi(f2(n)) for n € N. The map id(n) = n for Vn € N satisfies (f-id)(n) = (id-f)(n) = f(n)
for n € N and thus is the left and right unit. Let us now consider an element g € S

defined by
_fn-1 (n>2),
9(”)_{1 (n=1).
Show there exists a right inverse of g in S but not a left inverse.

2 Dihedral Group Dj3;: Symmetry of Equilateral Triangle

Let us consider the following transformations which map an equilateral triangle to itself:

e Rotation. We call 27 /3 (counter-clockwise) rotation as c3. Since —27/3 rotation is
its inverse, we can denote it as cg L

e Reflections with respect to the three axes given in Fig.1 where we labeled the
vertices by 1,2 and 3. We call the reflection with respect to the axis (i) as o;
(i=1,2,3).
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Figure 1: Equilateral triangle and axes for reflections

We also denote the identity transformation (i.e. no transformation) as e. Then D3 =
{e, cs, cgl, 01,09,03} forms a group under the multiplication g1 - g2 (91,92 € D3) defined
as ‘first act on the triangle the transformation go and then g;’. Answer the following
questions:

1. Write down the multiplication table of Ds.

2. List up the nontrivial subgroup(s) of D3 (hint: there are four non-trivial subgroups
other than {e} and G).

3. Decompose D3 into the left cosets of a nontrivial subgroup of G (it is enough to
write down one example of the decomposition).

4. List up the nontrivial normal subgroup(s) of Ds.

5. List up the conjugacy class(es) of Ds.

3 Permutation Group

(1) Let us consider the permutation group S3 (the group formed by permutations of three
elements (1,2,3)). We denote the permutation (1,2,3) — (p1,p2,p3) (here {p1,p2,ps} =

{1,2,3} ) as
<1 2 3>
7'[':
b1 P2 D3

The product 7 - o of two elements w1, 19 € S3 is defined as ‘first do the permutation
corresponding to 7y and then 7;’. Answer the following questions:

1. What is the order of S3?7

2. Let us consider the following two permutations:

(123 (123
m={3192) ™7{132)"

Compute 71 - 9.
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3. Show that S3 can be generated by

/12 3 /12 3
m={93 1) m™={9 1 3)"

4. Explain that S3 is isomorphic to Ds.

(2) Prove the following theorem:
Cayley’s Theorem
A group of order n is isomorphic to a subgroup of the permutation group 5, or S, itself.

Hint: For a group G = {g1,92, - ,gn} and g € G, from the result of Problem 1 (1)-3,
we have {991,992, ,99.} = {91,92, -, gn}. Thus we can define a map

g1 g2 gn>

T:g—=m(g) =
g (9) <991 992 - 99n

Show that 7 is an isomorphic map from G to H = {m(g)|g € G} and H is a subgroup of
Sy, or .S, itself.
(3) For a positive integer n, a partition [A1, A2, - -+ , Ay] (here r > 1) is defined by integers
Ai (i=1,2,--- r) satisfying

MAdad ot h=n, AM>A>--->A>0.

Let us now consider the permutation group S,. In S,, there is a special type of
elements called cycles. A cycle (pip2---py) is defined as the cyclic permutation of
P1,P2,  * ,Px- For example, (123--- A1) is

(1 2 - A=1 X A+1 -+ n
(123--- ) = ( 23 -« A 1 A+1 - n ) '
Since m € S, can be decomposed into a product of cycles where each element in
{1,2,--- ,n} appears one and only one time, by using the corresponding partition of n,

we can write this decomposition as

m= M8 oY PP D) s D))

For o € S, prove that owro ! is of the form

orot = (¢ gy -\ @Va? a0 ).

Here {qgi), qéi), e ,qf\?} (1=1,2,---,r) are all different.

From this result, it follows that the number of the conjugacy classes of S, is equal to
the number of the partition of n.
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Note on Revision
December 23 2014
e Very minor revision and typos corrected in Problem 1 and 3.

e In Problem 2, the definition of the right/left coset is changed to make it consistent
with the lecture.



