Problem Set for Exercise Session No.1

Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 13th November, 2014, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

## 1 Some Basics

(1) Answer the following questions:

- 1. Show that the multiplication table of the group of order 2 is determined uniquely. Confirm that this group is Abelian (=commutative).
- 2. Show that the multiplication table of the group of order 3 is determined uniquely. Confirm that this group is Abelian.
- 3. Let us consider a group of order r denoted as  $G = \{g_1, g_2, \dots, g_r\}$ . We can compute  $g_1g, g_2g, \dots, g_rg$  for a given  $g \in G$ . Show that  $\{g_1g, g_2g, \dots, g_rg\}$  contains all the elements of G and each element of G appears one and only one time.

We can also show that the above statements hold for  $gg_1, gg_2, \dots, gg_r$  for a given  $g \in G$ . These results mean that, in each row and column of a multiplication table for a group G, each element of G appears one and only one time.

4. Show that there are two non-isomorphic groups (i.e. two different multiplication tables) of order 4. Confirm that both of them are Abelian.

(2) Let us consider a set S of maps from N to N (here  $\mathbb{N} = \{1, 2, 3, 4, \dots\}$ ). We define a multiplication of two elements  $f_1, f_2 \in S$  by the composition of the maps,  $(f_1 \cdot f_2)(n) = f_1(f_2(n))$  for  $n \in \mathbb{N}$ . The map id(n) = n for  $\forall n \in \mathbb{N}$  satisfies  $(f \cdot id)(n) = (id \cdot f)(n) = f(n)$  for  $n \in \mathbb{N}$  and thus is the left and right unit. Let us now consider an element  $g \in S$  defined by

$$g(n) = \begin{cases} n-1 & (n \ge 2), \\ 1 & (n = 1). \end{cases}$$

Show there exists a right inverse of g in S but not a left inverse.

## 2 Dihedral Group D<sub>3</sub>: Symmetry of Equilateral Triangle

Let us consider the following transformations which map an equilateral triangle to itself:

- Rotation. We call  $2\pi/3$  (counter-clockwise) rotation as  $c_3$ . Since  $-2\pi/3$  rotation is its inverse, we can denote it as  $c_3^{-1}$ .
- Reflections with respect to the three axes given in Fig.1 where we labeled the vertices by 1, 2 and 3. We call the reflection with respect to the axis (i) as  $\sigma_i$  (i = 1, 2, 3).



Figure 1: Equilateral triangle and axes for reflections

We also denote the identity transformation (i.e. no transformation) as e. Then  $D_3 = \{e, c_3, c_3^{-1}, \sigma_1, \sigma_2, \sigma_3\}$  forms a group under the multiplication  $g_1 \cdot g_2$   $(g_1, g_2 \in D_3)$  defined as 'first act on the triangle the transformation  $g_2$  and then  $g_1$ '. Answer the following questions:

- 1. Write down the multiplication table of  $D_3$ .
- 2. List up the nontrivial subgroup(s) of  $D_3$  (hint: there are four non-trivial subgroups other than  $\{e\}$  and G).
- 3. Decompose  $D_3$  into the left cosets of a nontrivial subgroup of G (it is enough to write down one example of the decomposition).
- 4. List up the nontrivial normal subgroup(s) of  $D_3$ .
- 5. List up the conjugacy class(es) of  $D_3$ .

## **3** Permutation Group

(1) Let us consider the permutation group  $S_3$  (the group formed by permutations of three elements (1,2,3)). We denote the permutation  $(1,2,3) \rightarrow (p_1,p_2,p_3)$  (here  $\{p_1,p_2,p_3\} = \{1,2,3\}$ ) as

$$\pi = \left(\begin{array}{rrr} 1 & 2 & 3 \\ p_1 & p_2 & p_3 \end{array}\right)$$

The product  $\pi_1 \cdot \pi_2$  of two elements  $\pi_1, \pi_2 \in S_3$  is defined as 'first do the permutation corresponding to  $\pi_2$  and then  $\pi_1$ '. Answer the following questions:

- 1. What is the order of  $S_3$ ?
- 2. Let us consider the following two permutations:

$$\pi_1 = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array}\right), \qquad \pi_2 = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array}\right)$$

Compute  $\pi_1 \cdot \pi_2$ .

3. Show that  $S_3$  can be generated by

4. Explain that  $S_3$  is isomorphic to  $D_3$ .

(2) Prove the following theorem:

Cayley's Theorem

A group of order n is isomorphic to a subgroup of the permutation group  $S_n$  or  $S_n$  itself.

*Hint*: For a group  $G = \{g_1, g_2, \dots, g_n\}$  and  $g \in G$ , from the result of Problem 1 (1)-3, we have  $\{gg_1, gg_2, \dots, gg_n\} = \{g_1, g_2, \dots, g_n\}$ . Thus we can define a map

$$\pi: g \mapsto \pi(g) = \left(\begin{array}{ccc} g_1 & g_2 & \cdots & g_n \\ gg_1 & gg_2 & \cdots & gg_n \end{array}\right) \,.$$

Show that  $\pi$  is an isomorphic map from G to  $H = {\pi(g) | g \in G}$  and H is a subgroup of  $S_n$  or  $S_n$  itself.

(3) For a positive integer n, a partition  $[\lambda_1, \lambda_2, \dots, \lambda_r]$  (here  $r \ge 1$ ) is defined by integers  $\lambda_i$   $(i = 1, 2, \dots, r)$  satisfying

$$\lambda_1 + \lambda_2 + \dots + \lambda_r = n, \qquad \lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r > 0.$$

Let us now consider the permutation group  $S_n$ . In  $S_n$ , there is a special type of elements called cycles. A cycle  $(p_1p_2\cdots p_{\lambda})$  is defined as the cyclic permutation of  $p_1, p_2, \cdots, p_{\lambda}$ . For example,  $(123\cdots \lambda_1)$  is

Since  $\pi \in S_n$  can be decomposed into a product of cycles where each element in  $\{1, 2, \dots, n\}$  appears one and only one time, by using the corresponding partition of n, we can write this decomposition as

$$\pi = (p_1^{(1)} p_2^{(1)} \cdots p_{\lambda_1}^{(1)}) (p_1^{(2)} p_2^{(2)} \cdots p_{\lambda_2}^{(2)}) \cdots (p_1^{(r)} p_2^{(r)} \cdots p_{\lambda_r}^{(r)}).$$

For  $\sigma \in S_n$ , prove that  $\sigma \pi \sigma^{-1}$  is of the form

$$\sigma \pi \sigma^{-1} = (q_1^{(1)} q_2^{(1)} \cdots q_{\lambda_1}^{(1)}) (q_1^{(2)} q_2^{(2)} \cdots q_{\lambda_2}^{(2)}) \cdots (q_1^{(r)} q_2^{(r)} \cdots q_{\lambda_r}^{(r)}).$$

Here  $\{q_1^{(i)}, q_2^{(i)}, \cdots, q_{\lambda_i}^{(i)}\}$   $(i = 1, 2, \cdots, r)$  are all different.

From this result, it follows that the number of the conjugacy classes of  $S_n$  is equal to the number of the partition of n.

## Note on Revision

December 23 2014

- Very minor revision and typos corrected in Problem 1 and 3.
- In Problem 2, the definition of the right/left coset is changed to make it consistent with the lecture.