Problem Set for Exercise Session No. 1
Course: Mathematical Aspects of Symmetries in Physics, ICFP Master Program (for M1) 13th November, 2014, at Room 235A

Lecture by Amir-Kian Kashani-Poor (email: kashani@lpt.ens.fr) Exercise Session by Tatsuo Azeyanagi (email: tatsuo.azeyanagi@phys.ens.fr)

1 Some Basics

(1) Answer the following questions:

1. Show that the multiplication table of the group of order 2 is determined uniquely. Confirm that this group is Abelian (=commutative).
2. Show that the multiplication table of the group of order 3 is determined uniquely. Confirm that this group is Abelian.
3. Let us consider a group of order r denoted as $G=\left\{g_{1}, g_{2}, \cdots, g_{r}\right\}$. We can compute $g_{1} g, g_{2} g, \cdots, g_{r} g$ for a given $g \in G$. Show that $\left\{g_{1} g, g_{2} g, \cdots, g_{r} g\right\}$ contains all the elements of G and each element of G appears one and only one time.

We can also show that the above statements hold for $g g_{1}, g g_{2}, \cdots, g g_{r}$ for a given $g \in G$. These results mean that, in each row and column of a multiplication table for a group G, each element of G appears one and only one time.
4. Show that there are two non-isomorphic groups (i.e. two different multiplication tables) of order 4. Confirm that both of them are Abelian.
(2) Let us consider a set S of maps from \mathbb{N} to \mathbb{N} (here $\mathbb{N}=\{1,2,3,4, \cdots\}$). We define a multiplication of two elements $f_{1}, f_{2} \in S$ by the composition of the maps, $\left(f_{1} \cdot f_{2}\right)(n)=$ $f_{1}\left(f_{2}(n)\right)$ for $n \in \mathbb{N}$. The map $i d(n)=n$ for $\forall n \in \mathbb{N}$ satisfies $(f \cdot i d)(n)=(i d \cdot f)(n)=f(n)$ for $n \in \mathbb{N}$ and thus is the left and right unit. Let us now consider an element $g \in S$ defined by

$$
g(n)= \begin{cases}n-1 & (n \geq 2) \\ 1 & (n=1)\end{cases}
$$

Show there exists a right inverse of g in S but not a left inverse.

2 Dihedral Group D_{3} : Symmetry of Equilateral Triangle

Let us consider the following transformations which map an equilateral triangle to itself:

- Rotation. We call $2 \pi / 3$ (counter-clockwise) rotation as c_{3}. Since $-2 \pi / 3$ rotation is its inverse, we can denote it as c_{3}^{-1}.
- Reflections with respect to the three axes given in Fig. 1 where we labeled the vertices by 1,2 and 3 . We call the reflection with respect to the axis (i) as σ_{i} ($i=1,2,3$).

(1)

Figure 1: Equilateral triangle and axes for reflections

We also denote the identity transformation (i.e. no transformation) as e. Then $D_{3}=$ $\left\{e, c_{3}, c_{3}^{-1}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ forms a group under the multiplication $g_{1} \cdot g_{2}\left(g_{1}, g_{2} \in D_{3}\right)$ defined as 'first act on the triangle the transformation g_{2} and then g_{1} '. Answer the following questions:

1. Write down the multiplication table of D_{3}.
2. List up the nontrivial subgroup(s) of D_{3} (hint: there are four non-trivial subgroups other than $\{e\}$ and G).
3. Decompose D_{3} into the left cosets of a nontrivial subgroup of G (it is enough to write down one example of the decomposition).
4. List up the nontrivial normal subgroup(s) of D_{3}.
5. List up the conjugacy class(es) of D_{3}.

3 Permutation Group

(1) Let us consider the permutation group S_{3} (the group formed by permutations of three elements $(1,2,3)$). We denote the permutation $(1,2,3) \rightarrow\left(p_{1}, p_{2}, p_{3}\right)$ (here $\left\{p_{1}, p_{2}, p_{3}\right\}=$ $\{1,2,3\}$) as

$$
\pi=\left(\begin{array}{ccc}
1 & 2 & 3 \\
p_{1} & p_{2} & p_{3}
\end{array}\right)
$$

The product $\pi_{1} \cdot \pi_{2}$ of two elements $\pi_{1}, \pi_{2} \in S_{3}$ is defined as 'first do the permutation corresponding to π_{2} and then $\pi_{1}{ }^{\prime}$. Answer the following questions:

1. What is the order of S_{3} ?
2. Let us consider the following two permutations:

$$
\pi_{1}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right), \quad \pi_{2}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right)
$$

Compute $\pi_{1} \cdot \pi_{2}$.
3. Show that S_{3} can be generated by

$$
\tau_{1}=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right), \quad \tau_{2}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right) .
$$

4. Explain that S_{3} is isomorphic to D_{3}.
(2) Prove the following theorem:

Cayley's Theorem
$\overline{\text { A group of order } n}$ is isomorphic to a subgroup of the permutation group S_{n} or S_{n} itself.
Hint: For a group $G=\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$ and $g \in G$, from the result of Problem 1 (1)-3, we have $\left\{g g_{1}, g g_{2}, \cdots, g g_{n}\right\}=\left\{g_{1}, g_{2}, \cdots, g_{n}\right\}$. Thus we can define a map

$$
\pi: g \mapsto \pi(g)=\left(\begin{array}{cccc}
g_{1} & g_{2} & \cdots & g_{n} \\
g g_{1} & g g_{2} & \cdots & g g_{n}
\end{array}\right) .
$$

Show that π is an isomorphic map from G to $H=\{\pi(g) \mid g \in G\}$ and H is a subgroup of S_{n} or S_{n} itself.
(3) For a positive integer n, a partition $\left[\lambda_{1}, \lambda_{2}, \cdots, \lambda_{r}\right]$ (here $r \geq 1$) is defined by integers $\lambda_{i}(i=1,2, \cdots, r)$ satisfying

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{r}=n, \quad \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{r}>0
$$

Let us now consider the permutation group S_{n}. In S_{n}, there is a special type of elements called cycles. A cycle $\left(p_{1} p_{2} \cdots p_{\lambda}\right)$ is defined as the cyclic permutation of $p_{1}, p_{2}, \cdots, p_{\lambda}$. For example, $\left(123 \cdots \lambda_{1}\right)$ is

$$
(123 \cdots \lambda)=\left(\begin{array}{cccccccc}
1 & 2 & \cdots & \lambda-1 & \lambda & \lambda+1 & \cdots & n \\
2 & 3 & \cdots & \lambda & 1 & \lambda+1 & \cdots & n
\end{array}\right) .
$$

Since $\pi \in S_{n}$ can be decomposed into a product of cycles where each element in $\{1,2, \cdots, n\}$ appears one and only one time, by using the corresponding partition of n, we can write this decomposition as

$$
\pi=\left(p_{1}^{(1)} p_{2}^{(1)} \cdots p_{\lambda_{1}}^{(1)}\right)\left(p_{1}^{(2)} p_{2}^{(2)} \cdots p_{\lambda_{2}}^{(2)}\right) \cdots\left(p_{1}^{(r)} p_{2}^{(r)} \cdots p_{\lambda_{r}}^{(r)}\right)
$$

For $\sigma \in S_{n}$, prove that $\sigma \pi \sigma^{-1}$ is of the form

$$
\sigma \pi \sigma^{-1}=\left(q_{1}^{(1)} q_{2}^{(1)} \cdots q_{\lambda_{1}}^{(1)}\right)\left(q_{1}^{(2)} q_{2}^{(2)} \cdots q_{\lambda_{2}}^{(2)}\right) \cdots\left(q_{1}^{(r)} q_{2}^{(r)} \cdots q_{\lambda_{r}}^{(r)}\right) .
$$

Here $\left\{q_{1}^{(i)}, q_{2}^{(i)}, \cdots, q_{\lambda_{i}}^{(i)}\right\}(i=1,2, \cdots, r)$ are all different.
From this result, it follows that the number of the conjugacy classes of S_{n} is equal to the number of the partition of n.

Note on Revision

December 232014

- Very minor revision and typos corrected in Problem 1 and 3.
- In Problem 2, the definition of the right/left coset is changed to make it consistent with the lecture.

