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NANOFLUIDICS

Nanofluidics: field of physics studying the fluid behavior at the nanoscale

Challenges and benefices from the nano scales :

v breakdown of bulk transport properties: Navier-Stokes, thermal transport, ...
v surface to volume effects: enhanced role of surface phenomena

v fluctuations of transport properties

v hew functionalities from fluid behavior at smallest scale

What is new and why now!?

v ability to build new and controlled nm channel!
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NANOFLUIDICS

Sensing :
single particle translocation

C. Dekker, Nature Nanotechology 2,209 (2007);
H. Liu et al.,, Science 327, 64 (2009);

Ultrafiltration :
filter for water desalination

J. K. Holt et al. Science 312, 1034 (2006);
D. Cohen-Tanugi et al. Nanoletters 12,3602 (2012);

Energy harvesting :

blue energy

A.Siria et al., Nature 494, 455 (2013);
Logan et al. Nature (2012);
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NANOFLUIDICS

e 200 liter of water
readsorbed/day

e 1.5kg NaCl

K. Schulten et al.

AQP-1

Bocquet-Charlaix, Chem Soc Rev (2010)



CARBON NANOCHANNELS

Intringuing results ... fluidic transport in carbon materials

Fast Mass Transport Through '
Sub-2-Nanometer Carbon Nanotubes¢

Jason K. Holt,** Hyung Gyu Park,** Yinmin Wang," Michael Stadermann,*
Alexander B. Artyukhin,® Costas P. Grigoropoulm,z Aleksandr Noy," Olgica Bakajin't 4

We report gas and water flow measurements through microfabricated membranes in which align¢ ?
carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas
flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude.
The measured water flow exceeds values calculated from continuum hydrodynamics models by
more than three orders of magnitude and is comparable to flow rates extrapolated from molecula:
dynamics simulations. The gas and water permeabilities of these nanotube-based membranes '
are several orders of magnitude higher than those of commercial polycarbonate membranes,
despite having pore sizes an order of magnitude smaller. These membranes enable fundamental
studies of mass transport in confined environments, as well as more enerqgy-efficient nanoscale

Science 2006

also: Hinds et al., Whitby et al. Lindsay et al., Strano
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CARBON NANOCHANNELS

Intringuing results ... fluidic transport in carbon materials

Membranes of graphene-like materials
Fast Mass Transport Through

Sub-2-Nanometer Carbon Nanotubes - "
Unimpeded Permeation of Water

Alexander B. Artyukhin,* Costas P. Grigoropoultas,z Aleksandr Noy,” Olgica Bakajin't

- -
We report gas and water flow measurements through microfabricated membranes in which aligne § Th ro u g h H e I I um -Lea k_TI g ht

carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas

flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude.
The measured water flow exceeds values calculated from continuum hydrodynamics models by ra p e n e - a se e m ra n es
more than three orders of magnitude and is comparable to flow rates extrapolated from molecula

dynamics simulations. The gas and water permeabilities of these nanotube-based membranes s 1,2 1,3 2 . . 1 s 1,2
are several orders of magnitude higher than those of commercial polycarbonate membranes, R. R. Nall', H. A WU, P. N. ]ayaram, . V. G"goneval A. K. Geim™**

despite having pore sizes an order of magnitude smaller. These membranes enable fundamental
studies of mass transport in confined environments, as well as more enerqgy-efficient nanoscale

e — et

O e 2006 Science 2012 Precise and Ultrafast Molecular

also: Hinds et al., Whitby et al. Lindsay et al., Strano Sle.vmg Through Graphene
Oxide Membranes

R. K. Joshi,* P. Carbone,? F. C. Wang,® V. G. Kravets,* Y. Su,* I. V. Grigorieva, H. A. Wu,?
A. K Geim,'* R R. Nairl*
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Science 2014
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NANOTECHNOLOGY 2016 © The A
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lon transport in complex layered graphene-based "¢«

under a Creati

membranes with tuneable interlayer spacing NonCommerc

10.1126/sciadv

Chi Cheng,"* Gengping Jiang,"* Christopher J. Garvey,? Yuanyuan Wang," George P. Simon,'?
lefferson 7 Liu,>*" pan Li'3*
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Science Adv. 2016
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FAST TRANSPORT IN CNTS 7

Holt et al., Science, 312, 1034 (2006)

Fast Mass Transport Through
Sub-2-Nanometer Carbon Nanotubes °

Jason K. Holt,™* Hyung Gyu Park,™** Yinmin Wang,* Michael Stadermann,*
Alexander B. Artyukhin,® Costas P. Grigoropoulos,” Aleksandr Noy," Olgica Bakajin’t

We report gas and water flow measurements through microfabricated membranes in which aligned
carbon nanotubes with diameters of less than 2 nanometers serve as pores. The measured gas
flow exceeds predictions of the Knudsen diffusion model by more than an order of magnitude.
The measured water flow exceeds values calculated from continuum hydrodynamics models by
more than three orders of magnitude and is comparable to flow rates extrapolated from molecular
dynamics simulations. The gas and water permeabilities of these nanotube-based membranes

are several orders of magnitude higher than those of commercial polycarbonate membranes,
despite having pore sizes an order of magnitude smaller. These membranes enable fundamental
studies of mass transport in confined environments, as well as more energy-efficient nanoscale
filtration.
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BREAKDOWN OF NO-SLIP BOUNDARY
CONDITIONS

Solid-liquid slippage at surfaces
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large slippage = low solid-liquid friction

F=-\SV, bzg



AFTER MORE THAN TEN YEARS OF WORK...

Water slippage versus wettability wetting  non-wetting
hydrophilic hydrophobic
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SLIPPAGE AND WATER FRICTION AT
CNT

Molecular Dynamics simulations with R. Netz
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NOW, WATER-CNT FRICTION 7

Molecular Dynamics simulations
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NOW, WATER-CNT FRICTION 7

Molecular Dynamics simulations

Friction coefficient

ultra-low friction
permeability increase by 104



NOW, WATER-CNT FRICTION 7

Molecular Dynamics simulations

(10* Ns/m°)
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Friction coefficient
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ultra-low friction
Transition to superlubricity ~ permeability increase by 104



ALTOGETHER

v water superlubricity in CNT at nanoscales

» A nanoscale effect
» A key ingredient of CNT: pertect crystallographic structure

» MD simulations: similar behavior for CNT and BNNT

» Lacks of experimental systematic investigation (!!)
800

-- b=90*(1+1.3/(R-0.4))
® CNT Theory Falk et al. ]
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N

200 ; cf reviews:
g ] Whitby-Quirke Nat. Nano (2007)
! : . 1'0 Bocquet-Charlaix Chem Com Rev (2010)

Raditie (nm) Forniasero et al. Adv. Mat. (2015)



Fluidics in nanotubes and nanochannels

Mass transport and
interfacial properties

lonic transport Nonlinear transport
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TOWARDS SINGLE NANOTUBES

assess fundamentals of transport in single nanotubes

transport in nano-channels for a better fundamental understanding



NANO TOOLBOX




NANO TOOLBOX

| — T

nanostructure building blocks

Open nanotube Drilled membrane

VN +

with Alessandro Siria since 2011



NOVA NANOSEM 450

ing Electron Microscope in situ manipulation

Scann
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TRANSMEMBRANE NANOTUBE

Carbon Nanomaterials Boron Nitride Nanomaterials

Here nanotubes:

multiwall Boron-Nitride nanotube BNNT
and Carbon nanotubes




3.WATER FLOW IN SINGLE CNT



Now, back to fundamentals:
are carbon materials specific to transport ?

and why ?

= superlubricity of carbon nanotubes ?

requires some fundamentals insight into transport
across carbon materials

experimental challenge...



FLOW THROUGH SINGLE NANOTUB
Fast flows through single CNT vs BNNT ?

Question: permeability of single nanotubes ?

(kAP

Uflow = =7

Challenge: flow through single nanotubes is too small to be measured
using standard techniques

requires resolution below femto-L/s, presently at most pico-L/s



ROUTE TO MEASURE FLOW

a water nano-jet emerging from a single nanotube

the peculiarity of the flow allows for a dye free tlow
measurement, with unprecedented sensitivity

CNT inserted in a
pipette
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FLOW THROUGH SINGLE NANOTUB

Harvest the specificities of the Landau-Squire jet flow

Uflow Flow generated from a semi-infinite pipe
v towards a reservoir
R R

F, 1
T

Uflow ™ m X

Landau, Fluid dynamics

MEASURE A FORCE, NOT A FLUX
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FLOW THROUGH SINGLE NANOTUB

Harvest the specificities of the Landau-Squire jet flow

U flow Flow generated from a semi-infinite pipe
v towards a reservoir

Landau, Fluid dynamics

MEASURE A FORCE, NOT A FLUX

Scalings (tube radius R): Fp ~ 77R tube Q '

A nanotube creates a measurable flow !

33nm CNT
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NANOJET FLOWS

T~
\\ .
/ ~._ Glass nanopipette

" External reservoir

containing the colloids.
, Polystyrene particles
The cellismountedonan  p=s500nm, ¢ = 105 in

inverted microscope. deionized water

Strategy:
1. measure the flow induced in the reservoir

2. deduce the mean velocity inside the nanotube



PROBE FLOW THROUGH A SINGLE CNT
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CNT 33nm
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MORE QUANTITATIVELY
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MORE QUANTITATIVELY
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TRONGLY INCREASED PERMEABILITY IN

NTS... NOT IN BNNTS

Permeability

30—
-(a) ‘\\

Radius (nm)

Secchi, Marbach, Nigues, Stein, Siria, Bocquet, Nature 537 (7619), 210-213 (2016)
Secchi, Marbach, Nigueés, Siria, Bocquet, JFM (2017)
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DEPENDENT SLIPPAGE IN CNTS
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Radius (nm)

Secchi, Marbach, Nigues, Stein, Siria, Bocquet, Nature 537 (7619), 210-213(2016)



RADIUS

DEPENDENT SLIPPAGE IN CNTS

Slip length (nm)

Theory
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Secchi, Marbach, Nigues, Stein, Siria, Bocquet, Nature 537 (7619), 210-213(2016)
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RADIUS DEPENDENT SLIPPAGE IN CNTS

Theory
400 800 ]
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HUGE DIFFERENCE CNT/BNNT, WHILE SAME CRYSTALLOGRAPHY

Secchi, Marbach, Nigues, Stein, Siria, Bocquet, Nature 537 (7619), 210-213(2016)



CARBON VS BN NANOFLUIDICS

first mass flow measurements in single nanotubes

* radius dependent superlubricity of CNTs

(qualitative but not quantitative agreement with theory)

e subtle (sub-)molecular origin: BN vs C

cf not predicted by classical MD
but by ab initio simulations: Tocci, Joly, Michaelides, Nanoletters 2014

e couple hydrodynamics with the electronic nature of the confining
material (semi-metallic carbon vs insulating BN)

cross-road between soft and hard condensed matter

much to understand



CARBON VS BN NANOFLUIDICS

e subtle (sub-)molecular origin: BN vs C

e couple hydrodynamics with the electronic nature of the confining
material (semi-metallic carbon vs insulating BN)

* many-body like fluidic transport: analogy with electronic transport

gating, fluidic transistor, coulomb blockade

cross-road between soft and hard condensed matter

much to understand
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Nanotubes under study

Arc discharge CVD Boron Nitride
Carbon nanotubes nanotubes



