

Une mesure quantique idéale du nombre de photons

Michel Brune

LABORATOIRE KASTLER BROSSEL

Département de physique de L'école normale supérieure, CNRS, UPMC

Mesure idéale et sauts quantiques

•Des postulats étranges aux conséquences étranges:

Sous l'effet d'une perturbation, l'évolution du système se fait sous forme de « sauts quantiques » entre les différentes valeurs possibles de l'observable mesurée.

- \Rightarrow évolution d'un système individuel discontinue
- \Rightarrow une évolution étrange vis-à-vis de:

L'évolution continue des systèmes classiques

 L'évolution continue des prédictions quantiques pour les valeurs moyennes d'observables.

Une façon de "résoudre" le problème

Schrödinger 1952 :

« one never experiments with just one electron, one atom or one molecule. In thought experiments we sometimes assume that we do, this invariably entails ridiculous consequences... »

(British Journal of the Philosophy of Sciences, vol 3, 1952)

Sauts quantiques et expériences

· Paradigme d'une mesure quantique répétée: un ion piégé

Depuis, on a observé les sauts quantiques de toutes sortes de particules matérielles: électrons, atomes, molécules, qubits artificiels

Dans ces expériences, la matière est sondée avec de la lumière Désormais, les grains de lumière peuvent aussi être « vus et revus » avec de la matière.

Compter des photons

• Facile, mais destructif: photomultiplicateur, photodiode

L'énergie du photon est absorbée et convertie en un signal électrique

Mesure quantique non-destructive (Braginsky, 1970)
 (QND: Quantum Non-Demolition)

Réalisation dans le domaine optique: Grangier et al., 396, 537-542 (1998).

Deux faisceaux interagissent dans un milieu Kerr: n(I)=n₀+n₁.I+... L'intensité du « signal » est codée dans la phase du « meter ».

l'effet Kerr est trop faible pour détecter les photons un par un

Détection répétée de photons:

 Piéger des photons en cavité:

Sonde sensible et transparente: des atomes individuels

Chaque atome est une petite horloge dont la marche est altérée par les photons piégés.

1. Les outils

 Atomes de Rydberg circulaires
 Photons micro-ondes en cavité supraconductrice

Atomes de Rydberg "circulaires"

Le "piège à photons"

6 cm

- Miroirs supraconducteurs
- $v_{cav} = 51 GHz$
- Durée de vie des photons

 $T_{cav} = 1 \dots \text{ to} \dots 130 \text{ ms}$

Le dispositif expérimental

« Zone de Ramsey »

Faible Q, pas si facile à faire...

La nouvelle boite à photons

La nouvelle technologie des miroirs

Miroirs cuivre

Usinage diamant: Précision ~1 µm ptv Rugosité ~10 nm Forme toroïdale → un seul mode: pas de dégénérescence de polarisation

• Dépôt de Nb (12 μ)

Technique développée pour les accélérateurs (CEA, Saclay:*E. Jacques, B. Visentin, P. Bosland*)

Kuhr, S. et al. Appl. Phys. Lett. 90, 164101 (2007)

Temps de vie des photons

• Cavité utilisée actuellement: $T_{cav} = 130 \text{ ms}$

•
$$\mathbf{Q} = \omega T_{cav} = 4.2 \cdot 10^{10}$$

• Finesse = $4.6 \cdot 10^9$

Le meilleur Fabry Pérot réalisé
4 milliards de réflexion
La lumière parcours un trajet
de 40 000 km

On peut observer des centaines d'atomes pendant la durée T_{cav} .

Historique: la durée de vie des photons

2. Voir et revoir un photon

Interaction non-résonante

 → déplacements lumineux: les niveaux atomiques sont sensibles à la présence d'un photon
 → interaction non-résonante + couplage adiabatique:
 Cette sonde atomique est complètement transparente (absorption < 10⁻⁴ à 10⁻⁶)

Principe de la mesure QND

Principe de la mesure QND

'pointe" sur un nombre de photons

Principe de la mesure QND

Chaque détection fournit une information binaire $+\phi$ ou $-\phi$ (0 ou 1) En général, cela ne suffit pas à mesurer n.

Détecter 0 ou 1 photon

La mesure de Sy suffit à déterminer parfaitement n=0 ou n=1.

Détection atomique de e → projection du champ sur |1> g → projection du champ sur |0>

Une séquence plus typique

$$T = 1.5 \text{ K} \rightarrow n_{th} = 0.05 \text{ photons}$$

Amortissement d'un photon

• On prépare un photon à t=0 avec un atome

 Réalisation individuelle de l'expérience: le photon disparaît à un instant aléatoire

 Moyennage sur 900 réalisations: on retrouve l'amortissement prédit par l'équation pilote de l'opérateur densité du champ

Statistics of steps duration

Residual thermal field: n_{th}=0.06 photon

Lifetime of n=0:1,45 stheory: 1,65 sLifetime of n=1:97 mstheory : 98 ms

Field damping time: $T_{cav} = 130ms$

$$\tau_1 = t_{cav} / (3n_{th} + 1)$$

3. Voir plus d'un photon

Détection de n>1

L'interaction prépare un état intriqué:

$$|\Psi\rangle = \sum_{n} C_{n} |+_{n\Phi_{0}}\rangle \otimes |n\rangle$$

Détection d'un atome = 1 bit ⇒ insuffisant pour mesurer n ⇒ répétons la mesure

Le nombre de photons est « codé » dans un échantillon mésoscopique d'atomes.

« décodage » du nombre de photons

Pour chaque valeur du nombre de photons, on a N copies identiques de l'état $|_{n\Phi_0}$.

Détermination du spin atomique par « tomographie »:

Tomographie de l'état atomique

Méthode: 1- injection d'un champ cohérent <n>=3.5 photons. 2- détection de N=110 atomes consécutifs: T_{mesure}=26 ms

Tomographie de l'état atomique

Méthode: 1- injection d'un champ cohérent <n>=3.5 photons.

2- détection de N=110 atomes consécutifs: T_{mesure}=26 ms

3- on recommence

Tomographie de l'état atomique

- Méthode: 1- injection d'un petit champ cohérent.
 - 2- détection de N=110 atomes consécutifs: T_{mesure}=26 ms
 - 3- accumulation d'une statistique suffisante

Préparation de n=3 par « sélection »

Sélection des mesures M₁
(Sx,Sy) dans la région
correspondant à n=3

Vérification:
 Corrélation avec une seconde mesure M₂
 indépendante

Préparation de l'état n=3

Mesure M_2 répétée juste après une mesure M_1 n=3: On observe la décroissance de n=3 vers n=2 et 1.

Mesure réalisée entre deux mesures n=3 ⇒ pureté proche de 100%

Trajectoire quantique individuelle:

On peut suivre en temps réel l'évolution du nombre de photons.

On a considéré la détection de 110 atomes comme une seule mesure: en fait les atomes sont détectés un par un.

Comment la mesure converge-t-elle progressivement vers n=3?

Acquisition progressive d'information

 Un autre point de vue sur la même expérience: décrire l'effet de l'information obtenue atome par atome en appliquant le postulat de projection à chaque détection atomique.

 $P_0(n)$ - état initial - Première mesure de S_{ω} (φ =0 ou $\pi/2$) résultat +_{ω} ou - _{ω} \downarrow $P_1(n)$ - obtenue par application du postulat de projection $P_2(n)$ $P_{N}(n)$ - état final après détection de N atomes

Effet d'une mesure élémentaire sur le champ

 $\varphi = \pi/2$ mesure Sx $\varphi = 0$ mesure Sy

Effet d'une mesure élémentaire sur le champ

φ=0 Mesure de Sy

Effet d'une mesure élémentaire sur le champ

Acquisition progressive d'information

on envoie des atomes successifs.

 on varie la phase de détection: chaque atome décime des nombres de photons différents

 $\varphi(k) = a,b,c \text{ or } d$

j 11011111111001110

i ddcbccabcdaadaabad

Décodage de n:

$$P_N(n) = \prod_N(n) \cdot P_0(n) \cdot \frac{1}{z}$$

 $\Pi_N(n)$: produit de fonctions sinus dont la phase dépend: - de la direction de détection $\varphi(k)$ - du résultat de chaque mesure e ou g (0 ou 1)

Projection progressive du champ

Décodage (données réelles décodables en temps réel)

Champ initialement cohérent <n>=3.7 (±0.008)

Distribution initiale plate (nombre de photon a priori quelconque): Le résultat de la mesure est indépendant de ce choix

La probabilité de converger vers n=5 dépend du champ que l'on mesure.

Projection progressive de l'état du champ sur un état nombre

Projection progressive du champ

j(k) $\varphi(k)$ ddcbccabcdaadaabadddbadbcdababbaacbccdadccdcbaaacc

Cette analyse « atome par atome » est complètement équivalente à l'approche « globale » fondée sur la mesure de (Sx,Sy) pour un échantillon de 110 atomes

Une autre séquence

projection sur n=7

 Le nombre de photon final est aléatoire

• La statistique des résultats doit refléter la statistique du champ initial (postulat de la mesure)

Statistique du nombre de photons

Mesures répétées

- Mesure non-destructive: l'évolution n'est pas due à l'absorption par l'appareil de mesure.
- Observation de toutes les caractéristiques de la mesure quantique idéale: projection, résultat aléatoire, répétabilité...

Mesure QND du nombre de photons

Pour chaque réalisation on estime P(n,t)

Reconstruction de l'évolution moyenne

4- Perspectives: préparation d'états non-classiques

Une trajectoire particulière

Perspectives

• Mesure du nombre de photons:

⇒ projection d'un état cohérent sur un "chat de Schrödinger" dont on peut étudier la décohérence en mesurant la fonction de Wigner.

• Un autre aspect intéressant de la théorie quantique de la mesure:

Chat de Schrödinger et décohérence

Perspectives

• Expérience à 2 cavities: chats de Schrödinger" non-locaux

 $\frac{1}{\sqrt{2}}(|\alpha\rangle|0\rangle+|0\rangle|\alpha\rangle)$ $\frac{1}{\sqrt{2}}\left(\left|\mathcal{B}\right|\right) + \left|\mathcal{B}\right|\right)$

Paire EPR de chats de Schrödinger

Conclusion

- Une nouvelle génération de cavités: durée de vie: 0.13 s, Q=4.10¹⁰
- Mesure QND du nombre de photons:
 - →Réalisation d'une mesure quantique idéale
 observation d'une projection progressive
 →Mesure QND répétée:

observation des sauts quantiques de la lumière →Préparation d'états nombres *n*<8 et étude de leur décohérence.

79

L'équipe

Membres actuels

PhD: Julien Bernu Samuel Deléglise Christine Guerlin Clément Sayrin Post-doc: Igor Dotsenko

Permanents: Jean-Michel Raimond Michel Brune Serge Haroche

Anciens membres: Stefan Kuhr (Mainz) Sébastien Gleyzes (post-doc Westbrook) Ulrich Hoff (diploma, Copenhagen)

Collaboration: CEA Saclay (DAPNIA): P. Bosland, B. Visentin, E. Jacques.

