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The two eigenvalues of M are the solutions of its characteristic equation
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Denoting X = M11 − M22 and Y = 2M12, we realize that X and Y are two independent Gaussian
random variables, both of variance 2, and that ∆ =
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X2 + Y 2 can be seen as the distance from the

origin of a point drawn in the plane with this distribution. Hence the density of ∆ is
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after a change of variable towards polar coordinates. The average value of ∆ is thus
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Changing variables from ∆ to s = ∆/E[∆] yields the probability density

P (s) = P̂ (∆ = s
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